Link-Ebene Physik

Lehrplananbindung: 10.2 Die Mechanik Newtons – Grenzen der newtonschen Mechanik

Kompetenzen: Neben den Fachkenntnissen liegt der Schwerpunkt bei

Erkenntnisgewinnung	Fachmethoden wiederge- ben	Fachmethoden nutzen	Fachmethoden problembezo- gen auswählen u. anwenden
Kommunikation	Mit vorgegebenen Dar- stellungsformen arbeiten	Geeignete Darstellungsformen nutzen	Darstellungsformen selb- ständig auswählen u. nutzen
Bewertung	Vorgegebene Bewertun- gen nachvollziehen	Vorgegebene Bewertungen beurteilen und kommentieren	Eigene Bewertungen vorneh- men

Aufgabenbeispiel: Die Bedeutung der Lichtgeschwindigkeit

a) Recherchieren Sie, welche herausragende physikalische Bedeutung die (Vakuum-)Lichtgeschwindigkeit c hat.

Im Projekt FLASH am *Deutschen Elektron Synchrotron (DESY)*, einem Großlabor in Hamburg, werden Elektronen extrem stark beschleunigt. An einem einzelnen Elektron wird dabei die Beschleunigungsarbeit $W_{\rm B} = 1,6 \cdot 10^{-10} \, \rm J$ verrichtet. Die Masse eines ruhenden Elektrons beträgt $m = 9,1 \, 10^{-31} \, \rm kg$.

b) Berechnen Sie die Geschwindigkeit des Elektrons nach dem Beschleunigungsvorgang mithilfe der Ihnen bekannten Formel für die kinetische Energie. Diskutieren Sie, inwiefern ihr Ergebnis einen Widerspruch zu ihren Rechercheergebnissen aus Teilaufgabe a) darstellt. Wie kann dieser scheinbare Widerspruch gelöst werden.

Lösung:

a) Die Lichtgeschwindigkeit c ist in allen Bezugssystemen gleich und hat den Wert 3 · 10⁸ m s⁻¹, der nicht überschritten werden kann.

b)
$$W_B \rightarrow E_{kin} = \frac{m}{2}v^2 \rightarrow v = 1.9 \cdot 10^{10} \frac{m}{s}$$

Die berechnete Geschwindigkeit ist erheblich größer als c, die gemäß der Recherche nicht überschritten werden kann. Der Widerspruch kann gelöst werden, indem man die Masse m nicht mehr als Konstante betrachtet.