Link-Ebene Physik

Lehrplananbindung: Ph 12.2 Ein Atommodell der Quantenphysik – Anwendungen

Kompetenzen: Neben den Fachkenntnissen liegt der Schwerpunkt bei

Erkenntnisgewinnung	Fachmethoden beschrei- ben	Fachmethoden nutzen	Fachmethoden problembezo- gen auswählen u. anwenden
Kommunikation	mit vorgegebenen Darstel- lungsformen arbeiten	Geeignete Darstellungsfor- men nutzen	Darstellungsformen selbst- ständig auswählen u. nutzen
Bewertung	Vorgegebene Bewertungen nachvollziehen	Vorgegebene Bewertungen beurteilen und kommentieren	Eigene Bewertungen vor- nehmen

Aufgabenbeispiel: Röntgenstrahlung (Jgst. 12)

- a) Skizzieren Sie ein typisches Spektrum einer Röntgenröhre.
- b) Skizzieren Sie den Aufbau einer Röntgenröhre und beschreiben Sie anhand des quantenmechanischen Atommodells die Vorgänge, die zur Emission der charakteristischen Röntgenstrahlung führen.
- c) Photonen der K_{α} -Linie von Kupfer haben eine Energie von 8,0 keV. Begründen Sie, ob bei einer Betriebsspannung der Röntgenröhre von 8,0 kV diese K_{α} -Photonen emittiert werden.
- d) Die Röntgenstrahlung wurde 1895 durch Wilhelm Conrad Röntgen am Physikalischen Institut der Julius-Maximilians-Universität Würzburg entdeckt. Erste Anwendungen entstanden sehr bald darauf, heute findet Röntgenstrahlung in vielen Bereichen Anwendung. Stellen Sie diese gesellschaftliche Bedeutung von Röntgens Entdeckung dar und erläutern Sie, auf welchen physikalischen Effekten die Anwendungen jeweils beruhen.

Lösungen

- a) Gemäß Unterrichtsmitschrift.
- b) Gemäß Unterrichtsmitschrift.
- c) Nein: K_α entspricht einem Übergang von der L- in die K-Schale, die Energie von 8,0 keV also der Energiedifferenz zwischen diesen beiden Schalen. Zur Anregung muss aber ein Elektron aus der K-Schale ionisiert (oder mindestens bis in die erste nicht voll besetzte Schale angeregt) werden, dafür ist eine größere kinetische Energie der anregenden Elektronen, also eine größere Betriebsspannung als 8,0 kV, nötig.
- d) Röntgendiagnostik; zerstörungsfreie Werkstoffprüfung (z. B. Dickenuntersuchung): Das Absorptionsvermögen für Röntgenstrahlung ist vom durchstrahlten Material abhängig.

Strahlentherapie: Ionisierende Wirkung Kristallstrukturanalyse: Welleneigenschaft mit Wellenlängen in der Größenordnung von atomaren Abständen.